

TENTATIVE

Kaohsiung Opto-Electronics Inc.

FOR MESSRS : DA	TE : <u>Sep. 9</u>	$9^{ ext{th}}$,	,2020
-----------------	--------------------	------------------	-------

TECHNICAL DATA

TX14D203VM0BPA

Contents

No.	ITEM	SHEET No.	PAGE
1	COVER	7B64LTD-2664-1	1-1/1
2	RECORD OF REVISION	7B64LTD-2664-1	2-1/1
3	GENERAL DATA	7B64LTD-2664-1	3-1/1
4	ABSOLUTE MAXIMUM RATINGS	7B64LTD-2664-1	4-1/1
5	ELECTRICAL CHARACTERISTICS	7B64LTD-2664-1	5-1/1
6	OPTICAL CHARACTERISTICS	7B64LTD-2664-1	6-1/2~2/2
7	BLOCK DIAGRAME	7B64LTD-2664-1	7-1/1
8	LCD INTERFACE	7B64LTD-2664-1	8-1/7~7/7
9	OUTLINE DIMENSIONS	7B64LTD-2664-1	9-1/2~2/2
10	TOUCH PANEL	7B64LTD-2664-1	10-1/2~2/2

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64LTD-2664-1 PAGE 1-1/1

2. REC	ORD OF REVI	SION				
2. REC	ORD OF REVI	SION				
KAOHSIUNG	OPTO-ELECTRONICS I	NC. SHEET NO.	7B	64LTD-2664-1	PAGE	2-1/1

3. GENERAL DATA

3.1 DISPLAY FEATURES

This module is a 5.7" VGA of 4:3 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially. This display is RoHS compliant, and COG (chip on glass) technology and LED backlight are applied on this display.

Part Name	TX14D203VM0BPA
Module Dimensions	131.0(W) mm x 102.2(H) mm x 9.1(D) mm typ.
LCD Active Area	115.2(W) mm x 86.4(H) mm
Dot Pitch	0.06 x 3(R, G, B)(W) x 0.18(H) mm
Resolution	640 x 3(RGB)(W) x 480(H) dots
Color Pixel Arrangement	R, G, B Vertical stripe
LCD Type	Transmissive Color TFT; Normally Black
Display Type	Active Matrix
Number of Colors	262k Colors
Backlight	27 LEDs (3 serial x 9 parallel)
Weight	145g typ.
Interface	C-MOS; 18-bit RGB; 40 pins
Power Supply Voltage	3.3V for LCD; 12V for Backlight
Power Consumption	429 mW for LCD ; 2.16W for Backlight
Viewing Direction	Super Wide Version (In-plane Switching)
Touch Panel	4-wire resistive type; Film on Glass; Antiglare surface

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64LTD-2664-1	PAGE	3-1/1	
---------------------------------	--------------	----------------	------	-------	--

4. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	V_{DD}	0	7.0	V	-
Input Voltage of Logic	Vı	-0.3	V _{DD} +0.3	V	Note 1
Operating Temperature	Тор	-20	70	°C	Note 2
Storage Temperature	Tst	-30	80	°C	Note 2

- Note 1: The rating is defined for the signal voltages of the interface such as DE, Hsync, Vsync, CLK and RGB data bus.
- Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
 - Background color, contrast and response time would be different in temperatures other than $25\,^{\circ}\mathrm{C}\,.$
 - Operating under high temperature will shorten LED lifetime.

S	Н	Ε	E	I
	N	C).	

5. ELECTRICAL CHARACTERISTICS

5.1 LCD CHARACTERISTICS

 $T_a = 25 \, ^{\circ}C$, Vss = 0V

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage	V_{DD}	-	3.0	3.3	3.6	V	-
Input Voltage of Logic	1/	"H" level	$0.7V_{DD}$	-	V_{DD}	1/	Note 4
	Vı	"L" level	Vss	-	$0.3V_{DD}$	V	Note 1
Power Supply Current	I_{DD}	-	-	130	-	mA	Note 2
Vsync Frequency	f_{v}	-	-	60	-	Hz	-
Hsync Frequency	$f_{\scriptscriptstyle H}$	-	-	31.5	-	KHz	-
DCLK Frequency	f_{CLK}	-	-	25.2	-	MHz	-

- Note 1: The rating is defined for the signal voltages of the interface such as DE, Hsync, Vsync, CLK and RGB data bus.
- Note 2: An all black check pattern is used when measuring I_{DD} , f_{v} is set to 60 Hz.
- Note 3: 0.4A fuse is applied in the module for I_{DD}. For display activation and protection purpose, power supply is recommended larger than 1.0A to start the display and break fuse once any short circuit occurred.

5.2 BACKLIGHT CHARACTERISTICS

 $T_a = 25 \, ^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
LED Input Voltage	V _{LED}	Backlight Unit	-	12.0	-	V	Note1
LED Forward Current	I _{LED}	Backlight Unit	ı	180	ı	mA	-
LED Lifetime	-	180 mA	-	50K	-	hrs	Note 2

Note 1: Fig. 5.1 shows the LED backlight circuit. The circuit has 27 LEDs in total and R is 130Ω .

Note 2: The estimated lifetime is specified as the time to reduce 50% brightness by applying 180 mA at $25\,^{\circ}\mathrm{C}$.

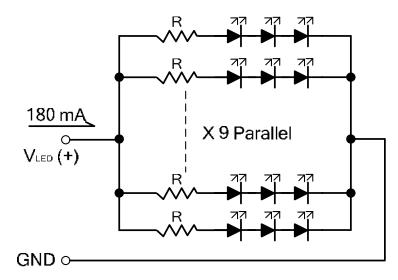


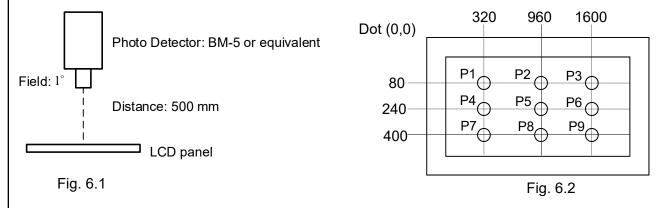
Fig. 5.1

6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25 °C.
- In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in Fig 6.1.

$T_{2} = 25$	$^{\circ}C, f_{\vee}$	= 60 Hz,	V_{DD}	= 3.3V

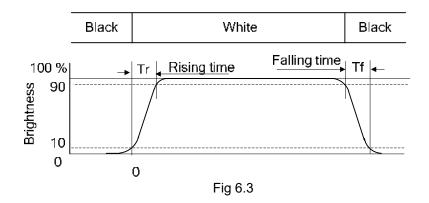

Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Brightness of White Brightness Uniformity Contrast Ratio		-		500	640	-	cd/m ²	Note 1
		-	$\phi = 0^{\circ}, \theta = 0^{\circ},$	70	-	-	%	Note 2
		CR	I _{LED} = 180mA	-	1000	-	-	Note 3
Response (Rising +		Tr + Tf	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	25	-	ms	Note 4
NTSC F	Ratio	ı	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	60	-	%	-
		θ x	$\phi = 0^{\circ}$, CR ≥ 10	-	85	-		
Viewing An	AI	$\theta x'$	φ = 180°, CR ≥ 10	-	85	-	D	Nata 5
	Angle	θ y	$\phi = 90^{\circ}, CR \ge 10$	-	85	Degree -		Note 5
		θ y'	$\phi = 270^{\circ}, CR \ge 10$	-	85	-		
	Dod	Χ		-	0.62	-		
	Red	Υ		-	0.35	-		
	Craar	X		-	034	-		
Color	Green	Υ		-	0.58	-		
Chromaticit	Blue	Х	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	0.14	-	-	Note 6
У	Dide	Υ		-	0.07	-		
	\/\/hite	X		-	0.30	-		
	White	Υ		-	0.31	-		

Note 1: The brightness is measured from the center point of the panel, P5 in Fig. 6.2, for the typical value.

Note 2: The brightness uniformity is calculated by the equation as below:

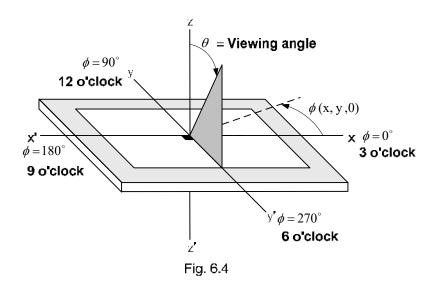
Brightness uniformity =
$$\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$$
 X100%

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.

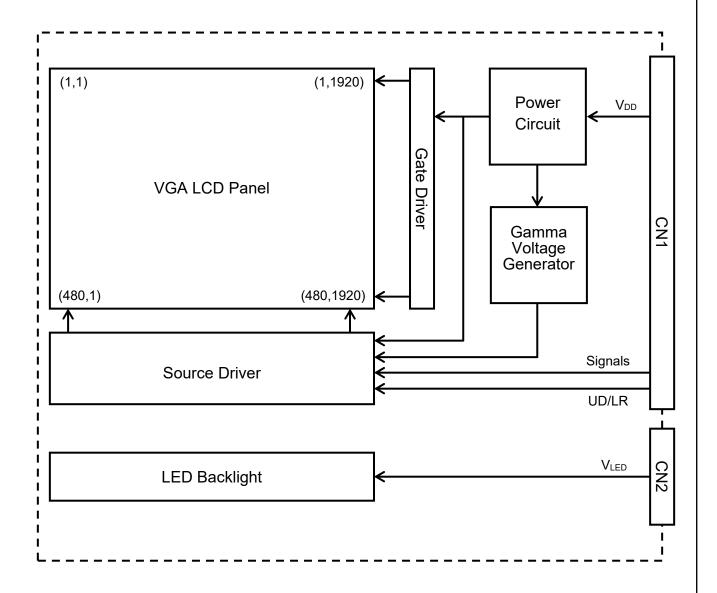


KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64LTD-2664-1	PAGE	6-1/2
---------------------------------	--------------	----------------	------	-------

Note 3: The Contrast ratio is measured from the center point of the panel, P5, and defined as the following equation:


Brightness of White CR = Brightness of Black

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 10% brightness to 90% brightness when the data is from black to white. Oppositely, falling time is the period from 90% brightness rising to 10% brightness.


Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY.

The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction.

Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

7. BLOCK DIAGRAM

Note 1: Signals are DE, Hsync, Vsync, CLK and RGB data bus.

8. LCD INTERFACE

8.1 INTERFACE PIN CONNECTIONS

The display interface connector is FA5B040HP1R3000 made by JAE (Thickness: 0.3 ± 0.05 mm; Pitch: 0.5 ± 0.05 mm) and more details of the connector are shown in the section of outline dimension.

Pin assignment of LCD interface is as below:

Pin No.	Signal	Function	Pin No.	Signal	Function
1	V_{DD}	Power Supply for Logic	21	G4	Green Data
2	V_{DD}		22	G3	Green Data
3	UD	Vertical Display mode Control	23	V_{SS}	GND
4	LR	Horizontal Display mode Control	24	G2	Green Data
5	Vsync	Vertical synchronous signal	25	G1	Green Data
6	DE	Data Enable Signal	26	G0	Green Data (LSB)
7	Vss	GND	27	Vss	GND
8	CLK	Dot Clock	28	R5	Red Data (MSB)
9	V_{SS}	GND	29	R4	Red Data
10	Hsync	Horizontal synchronous signal	30	R3	Red Data
11	Vss	GND	31	Vss	GND
12	B5	Blue Data (MSB)	32	R2	Red Data
13	B4	Blue Data	33	R1	Red Data
14	В3	Blue Data	34	R0	Red Data (LSB)
15	V_{SS}	GND	35	NC	No Connection
16	B2	Blue Data	36	Vss	GND
17	B1	Blue Data	37	NC	
18	В0	Blue Data (LSB)	38	NC	No Connection
19	Vss	GND	39	NC	No Connection
20	G5	Green Data (MSB)	40	NC	

Note 1: Please refer to <u>8.5 SCAN DIRECTION</u> for the setting methods of UD, LR function.

Note 2: Synchronous or DE mode would be automatically selected when signal input.

The backlight interface connector is BHR-03VS-1 made by JAE, and pin assignment of backlight is as below:

Pin No.	Signal	Level	Function
1	V _{LED} +	-	Power Supply for LED
2	NC	-	No connection
3	V _{LED} -	-	GND

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64LTD-2664-1	PAGE	8-1/7
---------------------------------	--------------	----------------	------	-------

8.2 TIMING CHART

A. SYNCHRONOUS MODE (DE grounded)

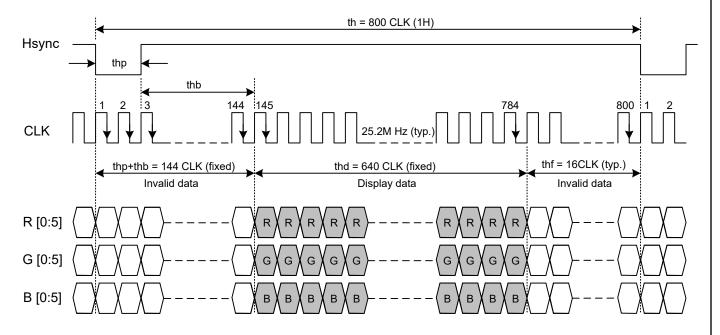


Fig. 8.1 Horizontal Timing of Synchronous Mode

Note 1: CLK's falling edge is the time to latch data and count (thp + thb), therefore, data sending and Hsync's falling edge should start when CLK's rise edge.

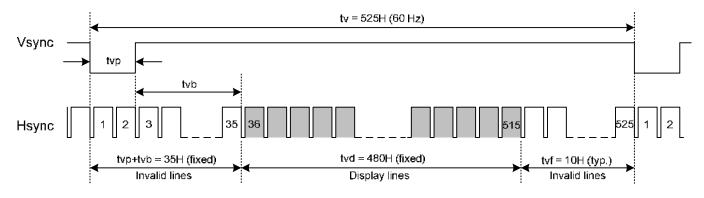


Fig. 8.2 Vertical Timing of Synchronous Mode

Note 2: Vsync's falling edge needs to start with Hsync's falling edge simultaneously to count (tvp + tvb).

KAOHSIUNG OPTO-ELECTRONICS INC.

B. DE MODE (Hsync & Vsync grounded)

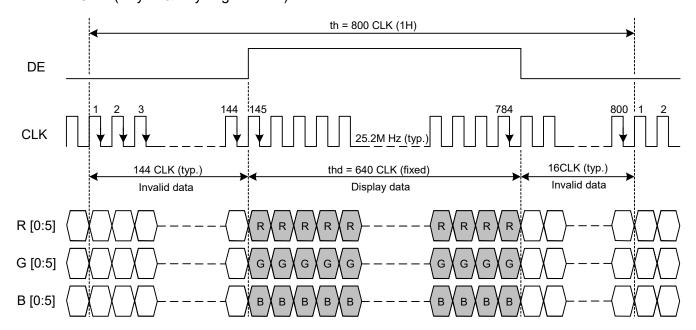


Fig. 8.3 Horizontal Timing of DE Mode

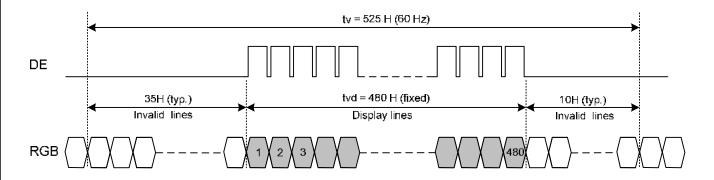


Fig. 8.4 Vertical Timing of DE Mode

C. CLOCK AND DATA INPUT TIMING

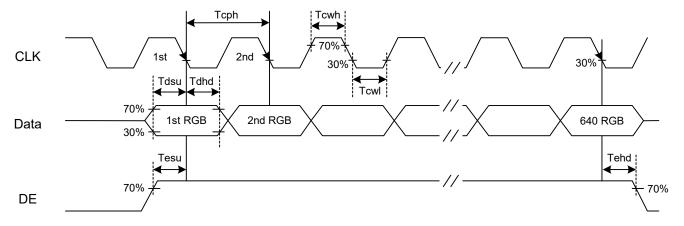


Fig. 8.5 Setup & Hold Time of Data and DE signal.

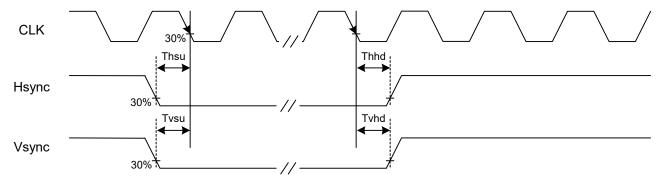


Fig. 8.6 Setup & Hold Time of Hsync and Vsync signal

8.3 TIMING TABLE

The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (Vsync) = 60Hz to define.

A. SYNCHRONOUS MODE

	Item	Symbol	Min.	Тур.	Max.	Unit
	CLK Frequency	fclk	-	25.2	-	M Hz
	Display Data	thd	-	640	-	
l laves	Cycle Time	th	-	800	-	
Hsync	Pulse Width	thp	-	30	-	CLK
	Pulse Width and Back Porch	thp + thb	-	144	-	
	Front Porch	thf	-	16	-	
	Display Line	tvd	-	480	-	
	Cycle Time	tv	-	525	-	
Vsync	Pulse Width	tvp	-	3	-	Н
	Pulse Width and Back Porch	tvp + tvb	-	35	-	
	Front Porch	t∨f	-	10	-	

B. DE MODE

	Item	Symbol	Min.	Тур.	Max.	Unit
	CLK Frequency	fclk	-	25.2	-	M Hz
Horizontal	Display Data	thd	-	640	-	CLIK
	Cycle Time	th	-	800	-	CLK
\/a.uti.a.a.l	Display Data	tvd	-	480	-	
Vertical	Cycle Time	tv	-	525	-	Н

C. CLOCK AND DATA INPUT TIMING

Item		Symbol	Min.	Тур.	Max.	Unit
OL IC	Duty	Tcwh	40	50	60	%
CLK	Cycle Time	Tcph	-	39.68	1	
) /a. /a.a	Setup Time	Tvsu	10	-	ı	
Vsync	Hold Time	Tvhd	10	-	ı	
Houng	Setup Time	Thsu	10	-	-	
Hsync	Hold Time	Thhd	10	-	-	ns
Dete	Setup Time	Tdsu	10	-	-	
Data	Hold Time	Tdhd	10	-	-	
DE	Setup Time	Tesu	10	-	-	
DE	Hold Time	Tehd	10	-	-	

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64LTD-2664-1	PAGE	8-5/7
---------------------------------	--------------	----------------	------	-------

8.4 POWER SEQUENCE

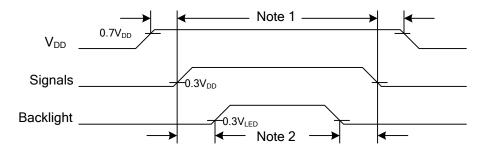
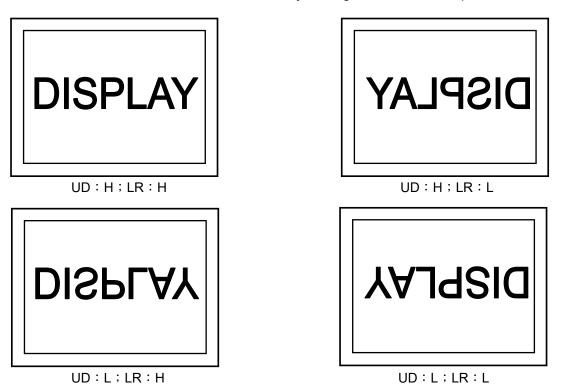
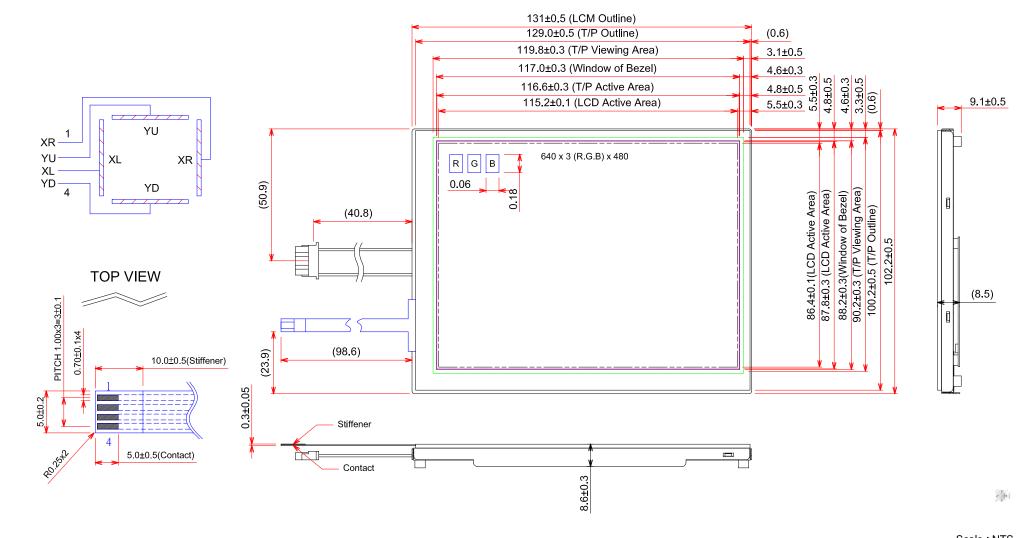



Fig. 8.7 Power Sequence Timing

- Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The opposite is true for power off where V_{DD} has to be remained on until all other signals have been switch off. The recommended time period is 1 second.
- Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed.

8.5 SCAN DIRECTION

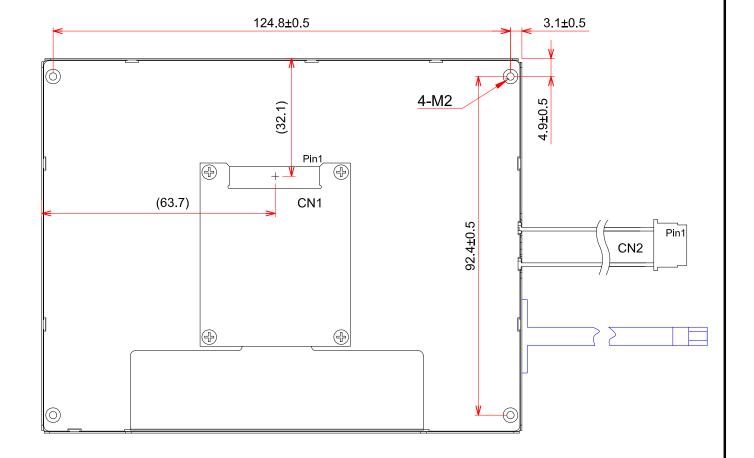
Scan direction is available to be switched as below by setting CN1's UD & LR pin.

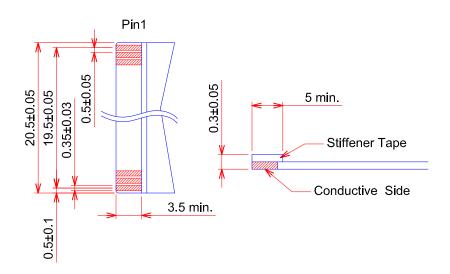


8.6 DATA INPUT for DISPLAY COLOR

	COLOR &	Data Signal																	
	Gray Scale	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

9. OUTLINE DIMENSIONS


9.1 FRONT VIEW


Scale : NTS Unit : mm

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET No. 7B64LTD-2664-1 PAGE 9-1/2

9.2 REAR VIEW

Recommended design rule for CN1 FPC

Note 1) CN1 : FA5B040HP1R3000

CN2: BHR-03VS-1(JST)

Scale : NTS Unit : mm

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET No. 7B64LTD-2664-1 PAGE 9-2/2

10. TOUCH PANEL

The type of touch panel used on this display is resistive, analog, 4-wire and film on glass, and more characteristics are shown as below:

10.1 OPERATING CONDITIONS

Item	Specification	Remarks
Operating Voltage	DC 5V	DC 7V Max.
Operating Current	20 mA	-

10.2 ELECTRICAL CHARACTERISTICS

Item		Specification	Remarks
Circuit registers	X- axis	300Ω~1100Ω	
Circuit resistance	Y-axis	100Ω~800Ω	-
Insulation Resistance	X-Y	>20M Ω	At DC 25V
Line a suite.	X	≤ ± 1.5%	Note 4
Linearity	Υ	≤ ± 1.5%	Note 1
Chattering		≤10 ms	-

Note 1: The test conditions and equipments of linearity are as below:

- Material of pen: poly-acetal resin

- End shape: R 0.8 mm

- Test force: 150 gf

- Pitch: 10 mm

- Test area is shown in Fig. 10.1

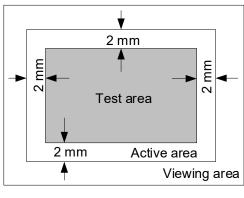


Fig. 10.1

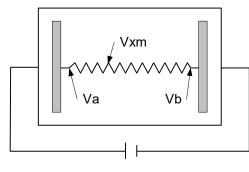


Fig. 10.2

As shown in Fig. 11.2, applying voltage meter to measure Va, Vb and Vxm, where Va is the maximum voltage in the active area; Vb is the minimum voltage in the active area; Vxm is the measured voltage of point x selected by random. Afterwards, the linearity can be calculated by following equation:

$$Linearity = \frac{\left| Vxi - Vxm \right|}{Va - Vb} \times 100\%,$$

where Vxi is the idea voltage of point x.

The method to measure the linearity of Y-axis is the same as above.

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64LTD-2664-1	PAGE	10-1/2	
---------------------------------	--------------	----------------	------	--------	--

10.3 MECHANICAL CHARACTERISTICS

Item	ı	Specification	Remarks
A ativation force	Finger	1.2N Max.	End shape: R8.0 mm
Activation force	Pen	1.2N Max.	End shape: R0.8 mm
Surface Ha	ardness	3H	JIS K 5400

10.4 OPTICAL CHARACTERISTICS

Item	Specification	Remarks
Transmittance	77%	-

10.5 SAFETY AND ATTENTIONS

- 1) Do not put heavy shock or stress on the touch panel.
- 2) Please use soft cloth or absorbent cotton with ethanol to clean the touch panel by gently wiping. Moreover, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the touch panel's surface.
- 3) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean the display's surface.
- 4) UV protection is recommended to avoid the possibility of performance degrading when touch panel is likely applied under UV environment for a long period of time.

SHEET
NO.